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Abstract

The subharmonic (period-Z, Z41) motions of a piecewise-nonlinear (PN) mechanical oscillator having parametric and

external excitations are investigated. The system is formed by a viscously damped, single-degree-of-freedom oscillator

subjected to a periodically time-varying, PN stiffness defined by a clearance surrounded by continuous forms of

nonlinearity. A multiterm harmonic balance formulation in conjunction with discrete Fourier transforms is used to

determine steady-state period-Z motions of the system near the parametric instability regions. The accuracy of analytical

solutions is verified through a comparison with direct numerical integration results. A parametric study is also presented to

demonstrate the combined influence of a clearance and of cubic nonlinearities on period-Zmotions within typical ranges of

system and excitation parameters.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The subharmonic resonance of a single-degree-of-freedom (sdof) piecewise-nonlinear (PN) oscillator is
investigated in this paper. The equation of motion is given in dimensionless form as

€uðtÞ þ 2z _uðtÞ þ wðtÞg½uðtÞ� ¼ f ðtÞ, (1)

where t is dimensionless time, an overdot denotes differentiation with respect to t, u(t) is displacement
response of a unit mass, and z is the viscous damping ratio. The restoring function g[u(t)] is considered to be a
PN function, and a special case is used in this study as

g½uðtÞ� ¼

P3
i¼1

ai½uðtÞ � 1�i uðtÞ41;

0 �1puðtÞp1;

P3
i¼1

ð�1Þi�1ai½uðtÞ þ 1�i uðtÞo� 1:

8>>>>>><
>>>>>>:

(2)
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2005.11.026

ing author. Tel.: +1 614 292 4678; fax: +1 614 292 3136.

ess: kahraman.1@osu.edu (A. Kahraman).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2005.11.026
mailto:kahraman.1@osu.edu


ARTICLE IN PRESS
Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636 625
In addition, Eq. (1) includes an external periodic excitation f ðtÞ and an internal parametric excitation w(t).
Period-1 motions of the same nonlinear oscillator were investigated in a recent paper by these authors [1] using
a multiterm harmonic balance method (HBM). The results were shown to agree well with numerical solutions.
A parametric study was provided to demonstrate the combined effects of significant system parameters and
continuous nonlinearities of g[u(t)] on period-1 motions of the system. Meanwhile, mechanical systems having
g[u(t)] as in Eq. (2) are expected to exhibit subharmonic and chaotic motions as well. In previous studies, Choi
and Noah [2] examined the subharmonic response of a sdof time-invariant bilinear system by using HBM.
Later, Choi and Lou [3] determined the forced steady-state response of a system with unsymmetric time-
invariant PN stiffness by an improved HBM algorithm that incorporates fast Fourier transforms. Kahraman
and Blankenship [4,5] demonstrated the existence of period-2, subharmonic resonances through measurements
from a spur gear pair. They also predicted the subharmonic response analytically by using a piecewise-linear
(PL) version of g[u(t)] with a2 ¼ a3 ¼ 0. Recently, Al-shyyab and Kahraman [6] predicted period-Z and
chaotic motions using a PL dynamic model of a multimesh gear system. However, these studies were limited
to either a PN version of g[u(t)] with no parametric excitation [3], or a PL version with or without parametric
excitation [2,4–6].

In this paper, the formulation presented in reference [1] is extended to predict period-Z subharmonic
motions exhibited by Eq. (1). The same multiterm HBM is used in conjunction with discrete Fourier
transforms (DFT) to obtain steady-state period-Z response. The accuracy of HBM solutions is demonstrated
through a comparison with numerical integration results. The results of a parametric study are presented to
describe the combined influence of continuous nonlinearities and clearance on the steady-state response of the
PN system defined by Eq. (1). In addition, the effect of system parameters, such as z, w(t), preload f1, and f(t),
on period-Z motions is investigated.
2. Period-g response to periodic excitations

The multiterm HBM formulation presented in Ref. [1] for period-1 motions is modified here to predict
period-Z (ZX1) motions of the same system. First, the periodic excitations w(t) and f(t) are given in Fourier
series form as

wðtÞ ¼ w1 þ
XK

k¼1

½w2k cosðkLtÞ þ w2kþ1 sinðkLtÞ�, (3a)

f ðtÞ ¼ f 1 þ
XM
m¼1

½f 2m cosðmLtÞ þ f 2mþ1 sinðmLtÞ�. (3b)

Next, a new independent variable is defined as y ¼ Lt=Z, and H ¼ L=Z, where Z is the sub-harmonic index.
The unknown steady state, period-Z response u(y) and the nonlinear restoring function g[u(y)] are also
assumed to be periodic and expressed in Fourier series as

uðyÞ ¼ u1 þ
XZR

r¼1

½u2r cosðryÞ þ u2rþ1 sinðryÞ�, (4a)

g½uðyÞ� ¼ v1 þ
XZR

r¼1

½v2r cosðryÞ þ v2rþ1 sinðryÞ�. (4b)

Substituting these equation into the equation of motion and enforcing harmonic balance yield a vector
equation S ¼ 0, where S ¼ ½S1S2S3; . . . ;S2ZR S2ZRþ1�

T, and

S1 ¼ v1 � f 1 þ
1

2

XK

k¼1

½w2kv2kZ þ w2kþ1v2kZþ1�, (5a)
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S2r ¼ �H2r2u2r þ 2zHru2rþ1 þ v2r þ v1w2r=Z � f 2r=Z

þ
1

2

XK

k¼1

w2k½v2ðkZ�rÞ þ v2ðkZþrÞ þ v2ðr�kZÞ�

þ
1

2

XK

k¼1

w2kþ1½v2ðkZ�rÞþ1 þ v2ðkZþrÞþ1 � v2ðr�kZÞþ1�; r 2 ½1; ZR�, ð5bÞ

S2rþ1 ¼ �H2r2u2rþ1 � 2zHru2r þ v2rþ1 þ v1wð2r=ZÞþ1 � f ð2r=ZÞþ1

þ
1

2

XK

k¼1

w2k½�v2ðkZ�rÞþ1 þ v2ðkZþrÞþ1 þ v2ðr�kZÞþ1�

þ
1

2

XK

k¼1

w2kþ1½v2ðkZ�rÞ � v2ðkZþrÞ þ v2ðr�kZÞ�; r 2 ½1; ZR�, ð5cÞ

Here, the Fourier coefficients v2r and v2r+1 of g[u(y)] are calculated by employing DFT as described in Ref. [1].
Hence, the above 2ZR+1 algebraic equations S ¼ 0 are solved for 2ZR+1 unknowns ui by using the
Newton–Raphson method as

uðmÞ ¼ uðm�1Þ � ½J�1�ðm�1ÞSðm�1Þ, (6)

where u ¼ ½u1u2u3; . . . ; u2ZRu2ZRþ1�
T, and m is the iteration index. The stability of the steady-state response is

determined by using Floquet theory [1].

3. Results

3.1. Comparison to direct numerical integration results

In order to evaluate the accuracy of HBM solutions from Eqs. (5) and (6), Eq. (1) is integrated numerically
utilizing a variable-order backward differentiation formula. An example of a periodic w(t) (w2 ¼ 0:4,
w4 ¼ 0:15, w6 ¼ 0:05, K ¼ 3, and all other wi ¼ 0) is considered here. This approximates the mesh stiffness of
an unmodified spur gear pair with an involute contact ratio of 1.37 [7]. The external force is assumed to be
constant with f 1 ¼ 0:5 and f i ¼ 0ði41Þ. Moreover, z ¼ 0:01, and g[u(t)] contains linear, quadratic, and cubic
terms with a1 ¼ 1, a2 ¼ 0:1, and a3 ¼ 0:2, respectively.

In Fig. 1(a), the root-mean-square (RMS) amplitudes of both stable and unstable period-Z (Z ¼ 1; 2; 3)
HBM solutions are shown as a function of L. These solutions are obtained by solving Eq. (1) for different Z
separately. To estimate period-Z solutions, 6Z harmonic terms (R ¼ 6) are assumed. The RMS value of the

response is defined as uZ
rms ¼

PZR
r¼1ðu

2
2r þ u2

2rþ1Þ

h i1=2
. A good agreement is observed between the HBM and

numerical solutions. Period-2 motions emerge when period-1 motions become unstable near the first
parametric resonance frequency of L ¼ 2. Stable period-1 and period-2 motions coexist for LA(1.38, 1.93),
while only period-2 motions are present when LA(1.93, 2.45). The shape of the period-2 resonance peak is
similar to that of a typical primary resonance of period-1 motions near L ¼ 1 with a pair of softening branches
(one stable and one unstable) bent to the left due to contact loss (single-sided impacts (SSI)) followed by
another pair of hardening branches owing to back contact (double-sided impacts (DSI)). A period-3
subharmonic resonance exists in Fig. 1(a) near L ¼ 3. Similar to PL systems as in Ref. [5], a ‘‘boomerang-
shaped’’ island arises, which is entirely isolated from the stable period-1 motions below. Similarly, a
comparison of the mean component of system response u1 from the HBM and numerical integration is shown
in Fig. 1(b), which further illustrates the agreement between two methods. While the results from the HBM
and numerical integration method agree satisfactorily in Fig. 1, more numerical solutions should be expected,
especially on the hardening portions of the primary and subharmonic resonance peaks. A main difficulty is
that the numerical integration method is inefficient in terms of computation time, particularly for lightly
damped systems. In addition, in the regions where multiple stable solutions coexist, one needs to search for
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Fig. 1. (a) urms and (b) u1 values of period-Z (Z ¼ 1; 2, and 3) motions (R ¼ 6) as a function of L given a2 ¼ 0:1, a3 ¼ 0:2, f 1 ¼ 0:5, f i ¼ 0

(iX2), w2 ¼ 0:4, w4 ¼ 0:15, w6 ¼ 0:05 (K ¼ 3), all other wi ¼ 0, and z ¼ 0:01. (—) stable HBM solutions, (– –) unstable HBM solutions,

and (J) numerical integration solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636 627
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proper initial conditions by trial-and-error to obtain the desired steady-state solutions. As a result, the
numerical solutions presented in Fig. 1 are incomplete, while HBM solutions are not subject to such
difficulties.

3.2. Parametric studies

A parameter set of ½a1; a2; a3; f 1; f i;wi; z;L� is considered for investigating the dynamic behavior of the
systems governed by Eq. (1). In Ref. [1], the influence of this set on period-1 motions was studied in detail
for LA[0, 1.5]. In this section, period-Z motions within a wider range of LA[0, 6] are investigated. In order
to limit the parametric study to a reasonable size, only period-2 and period-3 motions are considered,
but the formulation can handle higher subharmonic motions as well. The maximum harmonic index of the
Fourier series is chosen as R ¼ 6, which results in sufficiently accurate period-1 solutions as shown in
Fig. 1. Therefore, the numbers of harmonic terms for period-2 and period-3 motions are chosen as ZR ¼ 12
and 18 terms, correspondingly. The RMS value of the response urms is utilized to represent u(t). In the
figures provided in the following sections, solid and dashed lines represent stable and unstable motions,
respectively.

In Figs. 2 and 3, the effect of the cubic nonlinear term a3 on period-2 and period-3 motions is shown. In this
case, quadratic nonlinearity is not included, a2 ¼ 0. One softening condition with a3 ¼ �0:1, and two
hardening conditions with a3 ¼ 0:2 and 0.5, are considered in addition to the PL case of a3 ¼ 0. Period-2
and period-3 motions of the PL system agree well with the results of Kahraman and Blankenship [5]. In Fig. 2,
the effect of a3 on the u1 and urms values of period-2 parametric resonance is illustrated. For the softening case,
the RMS amplitude of the resonance peak is reduced with an increment of a3, and the resonance frequency
range is shifted to the left slightly. The SSI branch bends to the left further, and there are DSI motions for
a3 ¼ �0:1. However, for the hardening cases, the peak of the period-2 resonance moves to the right on the
frequency axis with the increment of a3. A pair of softening type SSI response curves (one stable and one
unstable) is followed by a pair of hardening type DSI curves bending to the right. The stable SSI motions
bifurcate into unstable DSI motions at certain transition frequencies, while unstable SSI motions turn into
stable DSI motions. The frequency of this transition increases with the value of a3 as shown in Fig. 2.
Therefore, the influence of a3 on the period-2 response is similar to that on period-1 motions near primary
resonance [1].

As in the case of PL systems [5], period-3 response represented in Fig. 3 by the RMS and mean components
is mostly an isolated closed curve, and another stable branch of period-1 motions coexists at a lower amplitude
that is not shown here. This period-3 resonance is associated with the second parametric resonance peak of the
corresponding linear time-varying system near L ¼ 3. Similar to Fig. 2, the curves of period-3 motions also
move to the left when a3o0, and to the right when a340. For softening cases, DSI motions do not exist, while
a wide range of DSI motions exists for the hardening cases. Since the upper DSI branch is completely stable
for a3 ¼ 0, a portion of it becomes unstable for a340. Numerical integration solutions indicate that higher-
order subharmonic motions such as period-6 motions exist at these frequencies of unstable DSI motions. The
frequency range of these unstable upper branch DSI motions is expanded by increasing a3. As shown in Fig. 3,
DSI motions are unstable when LA[2.08,2.31] for a3 ¼ 0:2, and when LA[2.19,2.92] for a3 ¼ 0:5. Moreover,
unlike the period-2 motions in Fig. 2, the value of a3 affects how low the urms of period-3 motions can get. For
a3o0, increasing the magnitude of a3 causes the response curve of period-3 motions to shrink and eventually
disappear. For a340, a larger a3 makes the SSI portion of the closed curve approach the stable branch of
period-1 motions underneath. The effect of a2 on period-2 and period-3 motions is similar to that of a3,
especially for hardening cases [8]. Therefore, only the influence of cubic nonlinear term a3 on subharmonic
resonance is illustrated here.

The effect of damping ratio z on period-2 and period-3 motions is illustrated in Fig. 4 for PN systems with
f 1 ¼ 0:5, f i ¼ 0 (iX2), w3 ¼ 0:3, a1 ¼ 1, a3 ¼ 0:2, and a2 ¼ 0. In Fig. 4, both SSI and DSI type period-2
motions coexist in addition to period-1 motions that are not shown here. When z is as low as 0.01, these two
types of motions are connected at saddle-node bifurcation points. Increasing z cannot eliminate the DSI
motions, but makes them separate from the SSI motions. The SSI type period-2 motions disappear for
z40.075, and the amplitudes of the DSI motions increase significantly. Similarly, for period-3 motions, both
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Fig. 2. Influence of a3 on urms of an oscillator with a1 ¼ 1 and a2 ¼ 0, given z ¼ 0:01, f 1 ¼ 0:5, f i ¼ 0 (iX2), w3 ¼ 0:3: (a) urms and (b) u1
values of period-2 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636 629
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Fig. 3. Influence of a3 on urms of an oscillator with a1 ¼ 1 and a2 ¼ 0, given z ¼ 0:01, f 1 ¼ 0:5, f i ¼ 0 (iX2), w3 ¼ 0:3: (a) urms and (b) u1
values of period-3 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636630
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Fig. 4. Influence of z on urms of an oscillator with a1 ¼ 1, a2 ¼ 0 and a3 ¼ 0:2, given f 1 ¼ 0:5, f 0 ¼ 0 (iX2), w3 ¼ 0:3: (a) urms and (b) u1
values of period-2 and period-3 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636 631
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Fig. 5. Influence of w3 on urms of an oscillator with a1 ¼ 1, a2 ¼ 0, and a3 ¼ 0:2, given z ¼ 0:01, f 1 ¼ 0:5, f i ¼ 0 (iX2), wi ¼ 0 (iX2 and

i 6¼3): (a) urms and (b) u1 values of period-2 and period-3 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636632
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Fig. 6. Influence of f1 on urms of an oscillator with a1 ¼ 1, a2 ¼ 0, and a3 ¼ 0:2, given z ¼ 0:01, f i ¼ 0 (iX2), w3 ¼ 0:3: (a) urms and (b) u1
values of period-2 and period-3 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636 633
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Fig. 7. Influence of f3 on urms of an oscillator with a1 ¼ 1, a2 ¼ 0, and a3 ¼ 0:2, given z ¼ 0:01, f i ¼ 0 (iX4), w3 ¼ 0:2: (a) urms and (b) u1
values of period-2 and period-3 motions. (—) Stable and (– –) unstable HBM solutions.

Q. Ma, A. Kahraman / Journal of Sound and Vibration 294 (2006) 624–636634
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SSI and DSI motions are present for the same system when zp0.05. Within a boundary defined by the
response curve for z ¼ 0:005, increasing z makes the response curve shrink towards the middle. Further
increasing z, first the DSI motions disappear, followed by the SSI motions. Like the hardening cases in Fig. 3,
there is an unstable portion at the beginning of the upper DSI branch. Increasing z reduces the frequency
range of this unstable DSI section.

Fig. 5 shows the effect of w(t) on period-2 and period-3 motions of the same PN systems for a3 ¼ 0:2. A
purely harmonic form of w(t) is considered in this section. Therefore, only the value of w3 is varied and other
Fourier components wi of w(t) are assumed zero. For period-2 motions, decreasing w3 has a similar effect as
increasing z, both of which tend to reduce the urms amplitude of parametric resonance. The system response
urms changes gradually with w3, since small changes in w3 do not result in drastic variations in period-2 and
period-3 motions. As the value of w3 is reduced, stable and unstable SSI branches come closer, and period-2
motions disappear altogether with further reductions in w3. Finally, a portion of the SSI branch of period-3
motions becomes unstable when w3 ¼ 0:4. This suggests that even though a larger w3 increases the amplitudes
of subharmonic response, stable period-Z motions may yield to higher-order subharmonic motions through
period-doubling bifurcations [6].

The effect of mean load f1 on period-2 and period-3 motions of PN systems with cubic nonlinearity is
illustrated in Fig. 6. Here, a hardening type PN oscillator with a3 ¼ 0:2 and a2 ¼ 0 is studied for different
f1 values. In this case, the influence of f1 is again gradual. For both period-2 and period-3 motions,
the parametric resonance peaks and the saddle-node bifurcation points connecting SSI and DSI motions
are moved to the right on the scale of L by increasing f1. At the same time, the amplitudes of stable
SSI motions are increased significantly, while the amplitudes of DSI motions are decreased slightly. Therefore,
the influence of f1 on large-amplitude DSI motions is quite insignificant. In addition, unstable motions
exist in the portion of the stable DSI branch of period-3 motions when f1 is relatively low, as in the case for
f 1 ¼ 0:25 and 0.5 in Fig. 6. In summary, f1 also has a significant influence on both period-2 and period-3
motions.

The effect of external excitation f(t) on period-2 and period-3 motions of a PN system is illustrated in Fig. 7
with a2 ¼ 0 and a3 ¼ 0:2. A harmonic external force defined by f3 is considered in addition to a parametric
excitation of w3 ¼ 0:2. As demonstrated, an increase of f3 tends to diminish subharmonic resonances that are
excited primarily by w3. This is because w3 and f3 are defined in positive numbers so that w(t) and f(t) are in
phase. The same type of cancellation of in-phase internal and external excitations was exhibited for the period-
1 motions as well [1]. When internal and external excitations are out of phase, subharmonic resonances are
increased by external excitation amplitude f3.
4. Conclusions

In this study, the dynamic response of a PN oscillator is investigated near the parametric resonant
frequencies. This oscillator is subjected to a mean load and combined parametric and external excitations,
as well as a restoring function g[u(t)] formed by clearance and continuous nonlinearities. Multiterm HBM
is used in conjunction with the Newton–Raphson method and DFT to predict period-Z (Z ¼ 2; 3) subharmonic
motions. The stability analysis of steady-state response is performed by applying Floquet theory. The HBM
predictions of period-1, period-2, and period-3 motions are shown to agree well with the direct numerical
integration solutions. A parametric study on the influence of a3, z, wi, and fi on period-2 and period-3
subharmonic motions is also included. It is shown that continuous nonlinearities influence the system
behavior near parametric resonant frequencies significantly. The unstable DSI motions of period-3 type
diminish as z or f1 increase, or w(t) decreases. In general, the results of this analysis show that subharmonic
motions are very sensitive to the values of three key parameters: damping ratio z, time-varying stiffness w(t),
and mean load f1. Parametric resonant peaks become extremely significant for very lightly damped systems
excited heavily by w(t). Parametric resonances are eliminated for large f1 when the nonlinearity is of the
softening type, while the amplitudes of SSI motions are increased for hardening type PN systems. Finally, an
external excitation f(t) that is in phase with w(t) tends to reduce the subharmonic resonance of the steady-state
response.
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